

Multimodal Magnetic Resonance Imaging and Spectroscopy for Prostate cancer Screening and Staging

<u>Ioannis Papadopoulos</u>¹, Jonathan Phillips^{2,} Gizem Portakal³, Rhodri Evans², Sophie Shermer¹

- 1. College of Science, Swansea University
- 2. Imaging Unit, College of Medicine, Swansea University
- 3. Dept of Physics, Cukurova University

Purpose

Prostate cancer screening and staging is important

Does mpMRI enhance clinical diagnosis?

Existing protocols: How robust are they?

Good Vs bad spectrum

Purpose – Beyond T2w

Spectroscopy

- detect chemical imbalances
- PCa biomarkers
- complexity
- poor data quality
- robust biomarker quantification?

Diffusion

- detect changes in cellularity
- Gaussian diffusion may be wrong
- low signal at high b-value
- EPI readout distortion

Perfusion

- biomarkers of vascularization
- Gd contrast agents safety

Improve robustness of clinical protocol

Methods

MRSI

Spine & pelvic coil used (NO endorectal coil)

3D CSI spectra analysis using PRESS

(Cho + Cr)/Cit calculations with in house & scanner software

DWI

DWI images (20 slices) for 4 b-values (0-1000)

Vendor supplied EPI diffusion sequence used

Spine & pelvic coil used

Results

Theory: (Cho + Cr)/Cit decreased for PC

Suspected malignancy

Non-suspicious / healthy

Patient	Mean Value (malignant)	Mean Value (healthy)	Patient	Mean Value (PP1)	Mean Value (PP2)	Average diff.	
P041	$1.998 {\pm} 1.532$	$2.858{\pm}0.861$	P042	$2.319{\pm}2.296$	1.193 ± 1.802	$2.221{\pm}2.193$	
P048	0.667 ± 0.328	2.507 ± 0.412	P055	$1.537{\pm}1.558$	$0.422 {\pm} 0.444$	$1.396{\pm}1.466$	
P051	0.580 ± 0.415	5.900 ± 2.620	P065	$1.632 {\pm} 0.605$	$0.649 {\pm} 0.679$	$1.377 {\pm} 0.520$	
P058	$2.549 {\pm} 0.365$	$1.248{\pm}1.120$	P076	1.619 ± 1.423	0.639 ± 1.266	0.960 ± 0.991	
Patient	Mean Value (malignant)	Mean Value (healthy)		PP1: FFT + Gaussian fitting			
P041	$0.684 {\pm} 0.737$	$0.631 {\pm} 0.096$		PP2 : PP1 + zerofiling, filter, baseline, phase, frequency PP3 : PP1 + filter, zero-filing			
P048	-	1.176 ± 1.008					
P051	$0.248 {\pm} 0.359$	$0.567 {\pm} 0.187$					
P058	$2.239 {\pm} 0.688$	$0.533 {\pm} 0.345$		PP4 : PP2			

Results: above not consistent with theory

Highly dependent on post-processing

• Results - MRSI

- poor shimming and frequency non-resonant
- CHESS water suppression fails
- highly noisy spectra

Close up

- we are essentially fitting noise
- Biomarker values unreliable

• Results - DWI

Theory: ADC decreases in PCa

For the aggregate the results agree to theory

The more detailed analysis reveals a lot of variability

• Results - DWI

- No evidence of non-Gaussian diffusion at low b-values contrary to what has been observed in literature
- Mostly good SNR and decent linear fit

Conclusions

Existing clinical protocol needs improvement

- T2w images mainly used
- MRSI has potential but is currently unreliable for biomarker quantification in clinical settings
- DWI data have high SNR ratios and good linear fits
- Dynamic Contrast Enhancement could add more diagnostic value

